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Abstract
A tensorial approach to Galilean invariance is utilized, together with Lie
symmetries of differential equations, in order to derive equations of Fokker–
Planck type containing a logarithmic diffusion tensor and drift term. The
formalism is based on the projection from an extended (by one space-like
dimension) Minkowski manifold G to the usual Newtonian spacetime, so that
non-relativistic models are described by manifestly covariant Lagrangians. In
this paper, we obtain the Fokker–Planck equations from the Euler–Lagrange
equations with the extended manifold G by using a specific choice of the gauge
condition. We work in (1+1) spacetime and carry out the analysis for both
Abelian and non-Abelian symmetries.

PACS numbers: 11.15.−q, 02.20.Sv, 05.20.Dd

1. Introduction

Lie groups and symmetries found their way into physics more than a century ago, and they are
widely used in many fields. Introduced by Sophus Lie in his study of symmetry transformation
groups of differential equations [1], they are the foundations of many powerful methods to
classify and determine solutions of differential equations [2]. After the advent of quantum
mechanics and quantum field theory, Lie groups became one of the most fruitful mathematical
tools of modern theoretical physics. In his seminal work, Wigner provided the foundations for
characterizing elementary particles from Lie group representations of the Poincaré group [3].
Along the same lines, non-relativistic quantum physics can be described from representations
of the Galilei group [4].
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In this work, we apply this approach to deduce Fokker–Planck transport equations which
describe physical situations where such type of equations are either not known or cumbersome.
The present approach can be useful, for instance, in the study of transport in QCD plasmas
[5–7]. Fokker–Planck equations in (1+1) dimensions with an arbitrary drift and diffusion terms
were fully classified by Rudra [8] and Cicogna and Vitali [9, 10]. The (2+1)-dimensional
case with constant diffusion was examined by Finkel [11]. A non-constant diffusion term
can be relevant for phenomena such as quantum chaos and nucleation in metals [14, 20–24].
Also, it is reasonable to expect that systems with confinement, such as a QCD plasma, can be
described by transport equations with drift and diffusion terms that go to zero, or diverge, in
the confinement realm.

Lie symmetries have often been invoked to solve and generalize the Fokker–Planck
equation with non-trivial drift and diffusion terms [12–19]. The central ingredient of these
approaches is a basic starting symmetry which is usually considered as the symmetry of
a more restrictive set of equations. For instance, the well-known symmetry group of the
diffusion equation has been used to derive Fokker–Planck equations [16], but the choice of
the initial symmetry and its realizations is arbitrary. One possibility is to exploit symmetries
of the underlying stochastic equations [25, 26], which should be related to the Fokker–Planck
equation.

In this paper, we use different realizations of three-dimensional Lie algebras in (1+1)
spacetime. In addition to some known results, we obtain a Fokker–Planck equation with
logarithmic drift and diffusion coefficients. Recently, computer simulations have stimulated
interest in this class of Fokker–Planck equations in relation with quantum chaos and
experimental results describing nucleation in metals [14, 20–24]. Let us emphasize that, in a
broad sense, our results show that a Fokker–Planck dynamics can be thought of as a field theory
fully defined in terms of symmetries. Our starting point is based on a Galilean-covariant metric
approach which describes the non-relativistic theories by working in a Minkowski spacetime G
extended by one spatial dimension, with light-cone coordinates [27–29]. In the present paper,
we gather and expand the results in [30, 31], emphasizing that the drift and diffusion tensors
can be explicitly obtained using a systematic scheme based on realizations of Lie algebras.

The plan of this paper is as follows. In section 2, we briefly review the derivation of
classes of Fokker–Planck equations with U(1) gauge-invariant Lagrangians. In section 3,
we present a prescription to enforce a specific symmetry with equations of Fokker–Planck
type on a (1+1) spacetime with SL(2, R) symmetry. These results are then extended to a
non-Abelian SU(2) gauge theory in section 4. Consideration of this example is intended to
get some understanding as to how to proceed with a non-Abelian gauge theory. Concluding
remarks are presented in section 5. We argue that the study of the SL(2, R) symmetry is
relevant for quantum chaos and nucleation in metals. The example of non-Abelian gauge
theory is presented as a simple illustration of a transport equation borrowing elements from a
color theory.

2. Summary of Abelian Fokker–Planck Lagrangians

In order to introduce the notion of Galilei covariance [30] we consider the five-vector
pµ = (p, p4, p5), where p is the Euclidean momentum vector, p5 = −H/v (with H the
energy, and v has the units of velocity) and p4 = −mv (with mass m). Then, with the metric

η = δij dxj ⊗ dxi − dx4 ⊗ dx5 − dx5 ⊗ dx4, (1)

we find the following dispersion relation:

pµpµ = pµpνg
µν = p2 − 2p4p5 = k2, (2)
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where k is a constant. This relation is consistent with the fact that a free particle with mass m
has total energy equal to H = p2/2m, so that

pµpµ = p2 − 2mH = 0.

Henceforth, we shall take k equal to zero, or absorb it within H.
The metric in equation (1) defines a (4+1) Minkowski space with a 15-dimensional

Poincaré algebra (corresponding to the inhomogeneous group of linear transformations in the
extended configuration space), which contains both the usual ten-dimensional Poincaré algebra
and the Galilei algebra. This extended manifold provides a unifying scheme for treating both
the relativistic and non-relativistic physics in (3+1) dimensions.

The five-vector pµ can be related to the canonical set of five conjugate coordinates
qµ = (q, q4, q5) in a configuration space G with metric η. In the present approach, these
variables are interpreted as follows: q are the canonical coordinates conjugate to p; q4 is
conjugate to p4 = H/v, so that q4 is a time coordinate; q5 is conjugate to p5 = mv, the mass
m up to a redefinition on the unit of mass. The mass q5 can then be written as a function of q
and q4 which obeys an expression for the analogue of an interval in G:

qµqµ = qµqνgµν = q2 − 2q4q5 = s2.

Since such an expression is the canonical-coordinate counterpart of the dispersion relation,
equation (2), we choose s = 0, which corresponds to k = 0. This leads to

q5 = q2/2q4.

With q4 = vt , it follows that q5 = q2/2vt . In short, we have defined an embedding of the
Euclidean space into G:

(q, t) → qµ = (q, q4, q5).

Let us consider U(1) gauge-invariant Lagrangian written in terms of the 2-form tensor
field F, with components Fµν :

L = − 1
4FµνFµν. (3)

The tensor Fµν is written in terms of the Abelian gauge fields J as

Fµν = ∂µJν − ∂νJµ,

where J remains to be specified. This leads to the usual Euler–Lagrange equations:

∂µ∂µJ ν − ∂ν∂µJµ = 0. (4)

The Lagrangian L is invariant under the gauge transformation

Jµ → J̄ µ = Jµ + ∂µh(x).

Taking the gauge condition as being

∂µ∂µJ ν = 0,

the function h(x) satisfies the constraint equation

∂µ∂µh(x) = β,

where β is an arbitrary constant, and also

∂µJµ = α,

where α is another arbitrary constant, which we can take equal to zero. Then the Euler–
Lagrange equation is written as

∂µJµ = 0. (5)
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In order to specify the five-dimensional vector field theory, we define this gauge theory on
a pseudo-Riemannian manifold R(G), with gµν(x) being the components of the metric tensor
[30, 31]:

g = P(x)Bij (x) dxj ⊗ dxi − dx4 ⊗ dx5 − dx5 ⊗ dx4, (6)

such that, at each point of R(G), the space is the locally flat G. The result is to write the
components of Jµ as

J i = Ai(x)P (x) + ∂jP (x)Bij (x),

J 4 = P(x),

J 5 = 0.

We obtain from equation (5) that

∂tP (x, t) = ∂

∂xi

[
−Ai(x, t)P (x, t) +

∂

∂xj
Bij (x, t)P (x, t)

]
, (7)

which is the Fokker–Planck equation with the drift term Ai(x, t), and the diffusion tensor
Bij (x, t). We can take P(x, t) to be a real positive and normalized function, so that it can be
interpreted as a (covariant) probability density.

In the following section, we address the problem of obtaining explicitly in a (1+1)-
dimensional spacetime the diffusion and drift terms by considering general symmetry
arguments.

3. Symmetries of drift terms and diffusion tensors

3.1. Procedure to enforce symmetries

There are various types of symmetries considered hereafter. First, there is the Galilean
spacetime symmetry, implemented here with the extended manifold. Second, the Lie
symmetries of differential equations, that is, the transformations (in general, of both the
dependent and independent variables) which leave these equations unchanged. And third, we
exploit gauge-symmetric Lagrangians.

In order to obtain explicit expressions for the drift vector and diffusion tensor terms
in equation (7), we proceed with a group theoretical approach based on symmetries of the
differential equations [2, 19]. In order to do so, we take a generic element G of the symmetry
Lie group. If G is connected to the identity, we have

G = exp

(
m∑

k=1

αkTk

)
, (8)

where Tk denotes the infinitesimal symmetry generators, and the coordinates αk are finite
numbers. A linear partial differential equation can be cast into the following general form:

�(x)θ(x) = 0, (9)

where �(x) is a partial differential (field) operator defined in Rm with coordinates x =
(x1, x2, . . . , xm), and θ(x) is a function of Rm. As explained previously [2, 12, 13, 19, 32],
to say that G is a symmetry group of equation (9) means that for a symmetry transformation
generator L(x) which belongs to the Lie algebra of G, we have

L(x)�(x)θ(x) = 0.
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Since we can write this generator in terms of the generators Tk as L(x) = akTk(x), we can
rewrite the invariance condition above as follows:

[Tk(x),�(x)] = rk(x)�(x), k = 1, . . . , dim(G), (10)

where rk(x)’s are functions in Rm.
Our purpose is to use equation (10) with �, a Fokker–Planck type differential operator,

and Tk the generators of a given Lie algebra. In order to understand how this approach
works, we start by considering the low dimensional algebras. Three-dimensional algebras are
classified [33] and can be used to determine the diffusion and drift terms, as shown in this
paper. The choice of a given algebra from the underlying physics is still an open question. The
present work is an initial effort in this direction by a systematic study of all representations
of lower dimensional algebras. To show how this is done, we consider the algebra with the
commutation relations

[T1, T2] = 2T2, [T3, T1] = 2T3, [T2, T3] = T1. (11)

This algebra is isomorphic to the sl(2, R) algebra, which has physical applications in the case
of quantum chaos and nucleation in metals. Clearly, it is possible to define many realizations of
this Lie algebra in terms of vector fields, even for a specific number of manifold dimensions.
All computations with symmetries were performed using the package SADE developed by
the mathematical physics group at the University of Brası́lia [34], written in the symbolic
manipulation system MAPLE.

We consider here realizations of this algebra in (1+1) spacetime of the form:

T1 = ∂t ,

T2 = k1(x, t)∂t + k2(x, t)∂x + h1(x, t),

T3 = k3(x, t)∂t + k4(x, t)∂x + h2(x, t),

(12)

where k1(x, t), k2(x, t), k3(x, t) and k4(x, t) are functions of x and t constrained by the
commutation relations in equation (11). If we substitute the expressions for T1 and T2 from
equation (12) with h1 = h2 = 0 into the commutator [T1, T2] of (11), then we find

[∂tk1(x, t) − 2k1(x, t)]∂t + [∂tk2(x, t) − 2k2(x, t)]∂x = 0

which leads to ∂tk1(x, t) = 2k1(x, t) and ∂tk2(x, t) = 2k2(x, t), the solutions of which are

k1(x, t) = f1(x) exp(2t), k2(x, t) = f2(x) exp(2t). (13)

Similarly, with the commutator of T1 and T3 in equation (11), the realization of equation (12)
gives us

[∂tk3(x, t) + 2k3(x, t)]∂t + [∂tk4(x, t) + 2k4(x, t)]∂x = 0,

and thence

k3(x, t) = f3(x) exp(−2t), k4(x, t) = f4(x) exp(−2t). (14)

Finally, by using the third commutator, [T2, T3], of equation (11), together with equation (12),
we obtain

k1(x, t)∂tk3(x, t) − k3(x, t)∂tk1(x, t) − k4(x, t)∂xk1(x, t) + k2(x, t)∂xk3(x, t) = 1 (15)

and

k1(x, t)∂tk4(x, t) − k3(x, t)∂tk2(x, t) + k2(x, t)∂xk4(x, t) − k4(x, t)∂xk2(x, t) = 0. (16)
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From equations (13) and (14), we find that equations (15) and (16) lead to

f2(x)∂xf3(x) − 4f1(x)f3(x) − f4(x)∂xf1(x) = 1,

f2(x)∂xf4(x) − 2f1(x)f4(x) − 2f3(x)f2(x) − f4(x)∂xf2(x) = 0.
(17)

Therefore, we may summarize by rewriting equation (12) as

T1 = ∂t ,

T2 = f1(x) exp(2t)∂t + f2(x) exp(2t)∂x,

T3 = f3(x) exp(−2t)∂t + f4(x) exp(−2t)∂x,

(18)

where the f ’s satisfy equation (17).
In the following section, we explore solutions of such equations and use the resulting

realizations in equation (10). This procedure allows us to specify the form of the drift and
diffusion terms in Fokker–Planck equations.

3.2. Examples of Fokker–Planck operators

We consider a Fokker–Planck equation in a (1+1)-dimensional spacetime:

�(x, t)P (x, t) = ∂tP (x, t) + ∂x[A(x, t)P (x, t)] + ∂xx[−B(x, t)P (x, t)] = 0. (19)

Let us now look for a realization of equations (17) with which we can consider as a candidate
to describe a system confined in some region of space. (In such a situation, the variable x in
the symmetry generators stands for the space coordinate.) As discussed in the introduction,
one possibility for a limited range, say [xa, xb] ∈ R, is to consider drift and diffusion terms
vanishing at x = xa and x = xb (another possibility is a divergent drift, but we will not
consider it here). But in our approach, this kind of behavior is determined by the nature of
the symmetry generators, in particular, those associated with space transformations. Then
we have to specify fi(x), i = 1, 2, 3, 4, in equations (18) with the physical characteristic of
the type of confinement considered here, which can be described by functions of the form
f (x) ∼ xn ln x (see figure 1). Then we find that the solutions of equation (17) are

f1(x) = c1, f3(x) = − 1

4c1
,

f2(X) = c2x
n ln x, f4(x) = c2

4c3
1

xn ln x.

(20)

Then the generators in equations (18) are given by

T1 = ∂t ,

T2 = exp(2t)∂t + 1
2xn ln x exp(2t)∂x,

T3 = − exp(−2t)∂t + 1
2xn ln x exp(−2t)∂x.

(21)

These operators fulfil the commutation relation in equation (11). A more general expression
of such operators, including a phase symmetry is given, for n = 1, by

T1 = 1

γ
∂t +

δ

2ε
+

1

2
, (22)

T2 = 1

2
e2γ t

(
2x ln x∂x +

1

γ
∂t + 1

)
, (23)

T3 = 1

2
e−2γ t

(
2x ln x∂x − 1

γ
∂t +

γ

ε
ln x − δ

ε

)
. (24)
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Figure 1. Behavior of functions xn ln x, for n = 1, 2, 3.

Using these results in equations (10), with the general expression for �(x) given in
equations (19), we obtain

�(x, t) = ∂t + γ − C

ln x
+ (2εx + 4εx ln x + 2γ x ln x − 2δx)∂x + 4εx2 ln x∂xx. (25)

This is a Fokker–Planck equation where the drift and the diffusion terms are given, respectively,
by

A(x) = γ x ln x − 2δx, (26)

B(x) = 4εx2 ln x. (27)

This result for the drift term was first analyzed by Lehnik [20], to describe nucleation in metals.
More recently, it has been pointed out by Dettman and Cohen [22] that due to quantum chaos
effects, some diffusion processes would be described by a logarithmic diffusion term. For
nonlinear Fokker–Planck equation including such log terms, see [14].

4. Non-Abelian logarithmic-like drift and diffusion terms

Consider a gauge-invariant non-Abelian Lagrangian defined on the manifold G discussed in
section 2:

L = − 1
4FaµνFaµν, (28)

where the Latin index a stands for the gauge group, with generators ta, a = 1, . . . , n, satisfying
the Lie algebra [ta, tb] = Cab

c tc, where Cab
c are structure constants of the gauge group

(summation convention over Latin indices is assumed). The field strength tensor Fa
µν is given

by

Fµνa = ∂µJνa − ∂νJµa − λCbc
a JµbJνc,

for which the equation of motion is written as D
µb
a Fµνb = 0, where D

bµ
a is the covariant

derivative D
µb
a = ∂µδb

a + λCbc
a J

µ
c . Using the gauge condition ∂µ∂µJνa = 0, the equations of
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motion for each component of J are

∂ν∂µJµ
a = λCbc

a ∂µ

(
Jµ

c Jνb

)
+ λCbc

a J µ
c ∂µJνb + λCcb

a J µ
c ∂νJµb + λ2Ccb

a Cde
b J µ

c JµdJνe. (29)

Despite the nonlinear structure of these equations, a Fokker–Planck system of equations can
be recognized if J is defined as in the Abelian case, and if we discard the nonlinear terms in
equation (29) [30], such that

∂µ∂νJ
µ
a = 0.

As a consequence

∂µJµ
a = α, (30)

where α is a constant. If we choose α = 0, we obtain equation (5), which leads to a
Fokker–Planck equation for each gauge index a.

On the other hand, by considering α � 1, then equation (29) reduces, up to second-order
terms in λα, to

∂ν

(
∂µJµ

a + λCbc
a J µ

c Jµb

) = 2λCbc
a J µ

c ∂µJνb + λCbc
a

(
∂νJ

µ
c

)
Jµb. (31)

The left-hand side of this equation can be integrated for each ν = 1, . . . , 5, such that the
right-hand side results in a nonlocal term along each direction. In a heuristic construction, if
we discard, as a first approximation, these nonlocal terms we obtain the following nonlinear
[30] equation:

∂µJµ
a + λCbc

a J µ
c Jµb = C, (32)

where C is a constant. In the following we chose C = 0 for illustrative purposes.
Let us consider as an example the SU(2) symmetry with J

µ
a defined by

J i
a = εaij

[
Ak

jPk + ∂k

(
Bnk

j Pn

)]
,

J 4
a = Pa,

J 5
a = 0,

where both gauge and tensor indices are of the same nature (that is, i, j, k and a, b, c are
all equal to 1, 2, 3), Ak

j = Ak
j (x) describes the drift term (which is now a rank-two tensor

(taking into account the vector and the gauge index), while Dnk
j (x) stands for the diffusion

term. Note that this definition can be developed along the reasoning used in the Abelian case.
From equation (32), it follows that εabcJ

µ
c Jµb = εabcJicJib = 0. Hence

∂tPa = εaji

[
∂i

(
Ab

jPb

)
+ Bcb

j ∂i∂bPc

]
. (33)

Let us analyze the content of this Fokker–Planck-like equation in some particular
situations. First, define

P2 = P3 = P,

A1
2 = f (z), A1

3 = g(y),

B13
2 = a(y), B12

3 = b(z),

where P is a constant and the other components of Ab
j and Bcb

j are zero. With the above
expressions for the drift terms A1

2 and A1
3, and the diffusion tensor components B13

2 = B12
3 ,

we are assured that we have an arbitrary process for this theory with color as the gauge index,
and yet, with the characteristics of a Fokker–Planck-like dynamics. Indeed, if we write

P1(y, z, t) = ϕ(y)φ(z) ewt ,
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we get

w = 1

φ(z)

[
d2

dz2
[b(z)φ(z)] +

d

dz
[f (z)φ(z)]

]
− 1

ϕ(y)

[
d2

dy2
[a(y)ϕ(y)] +

d

dy
[g(y)ϕ(y)]

]
.

Therefore, with

1

φ(z)

[
d2

dz2
[b(z)φ(z)] +

d

dz
[f (z)φ(z)]

]
= F1, (34)

1

ϕ(y)

[
d2

dy2
[a(y)ϕ(y)] +

d

dy
[g(y)ϕ(y)]

]
= F2, (35)

we have w = F1 − F2. By multiplying equation (34) by exp(F1t), we use

F1φ(z, t) = ∂

∂t
φ(z, t),

together with

φ(z, t) = φ(z) exp(F1t),

to find the equation

∂

∂t
φ(z, t) = ∂2

∂z2
[b(z)φ(z, t)] +

∂

∂z
[f (z)φ(z, t)]. (36)

Similarly, equation (35) becomes

∂

∂t
ϕ(y, t) = ∂2

∂y2
[a(y)ϕ(y, t)] +

∂

∂y
[g(y)ϕ(y, t)]. (37)

Note that equations (36) and (37) are as general as equation (19); hence we can
use the procedure developed in the last two sections, based on the algebra given by
equation (11), to provide expressions for a(y), g(y), b(z) and f (z). Let us consider the
possibility of logarithmic terms in these functions such as

a(y) = 4εy2 ln y, g(y) = 2δy + γy ln y,

b(z) = 4εz2 ln z, f (z) = 2δz + γ z ln z.

For the steady state, we have to solve the following equation:

�′(x) + F(x)� + c1(x) = 0,

where �(x) stands for ϕ(y) and φ(z), while c1(x) is given by c/b(x), and

F(x) = [(4ε + 2δ)x + (8ε + γ )x ln x]/b(x).

A solution for c1 = 0 is given by

�(x) = c2 exp[−G(x)],

where

G(x) = (8ε + γ )
1

4ε
ln x +

1

4ε
(4ε + 2δ) ln(ln x).

The solution, P1(y, z), is then given by

P1(y, z) = ϕ(y)φ(z) = exp[G(y) + G(z)],

where A is a constant.
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Recent experiments at the relativistic heavy ion collider (RHIC) have revealed that the
deconfined quark–gluon matter thereby obtained appears to behave like a strongly interacting
quark–gluon plasma fluid [35, 36]. Such fluids seem to have a very low viscosity, so that
it flows approximately like a perfect fluid. However, a detailed study would require using a
transport equation, with consideration to the non-Abelian nature of quarks and gluons in order
to deduce effectively the properties of the plasma. In this context, many studies of Yang–
Mills fluid dynamics have been performed by Jackiw and co-workers, taking into account
the relativistic as well as non-relativistic models [37]. Along the same directions, we have
inferred a Fokker–Planck equation via a variational principle with gauge-invariant Lagrangians
[30, 31]. A full consideration of the quark–gluon plasma is necessary to consider the symmetry
group of the quarks plus the SU(3) gauge group. This will likely require a coupled set of
Fokker–Planck equations. Such a study is being undertaken and will be presented later on.
However, the present work already indicates the role of symmetry in obtaining the structure
of drift and diffusion terms in the Fokker–Planck equation.

We have thus examined U(1) gauge-invariant Lagrangians and the generalization to
non-Abelian theory, considering, as an example, the SU(2) symmetry for color-like Ornstein–
Uhlenbeck processes [30, 31]. This type of gauge-invariant formulation can be useful for
various different problems. For instance, for the gauge group, the drift and diffusion terms
were derived with the physical content of a metric tensor on a pseudo-Riemannian manifold
defined in such a way that G is the local manifold.

5. Concluding remarks

In this paper, we have constructed equations of Fokker–Planck type by enforcing various
symmetries: (i) Galilean invariance is implemented in an extended Minkowski spacetime
to show that the usual Fokker–Planck equation presents U(1) symmetry; (ii) the theory of
Lie symmetries of differential equations is used to obtain an explicit expression for the drift
and diffusion terms; (iii) gauge symmetry is implemented by using the Galilean covariance,
resulting in a Fokker–Planck Lagrangian including a non-Abelian gauge color index. Items (i)
and (ii) were discussed to some extent earlier [30]. However, here we have focused our attention
on finding an explicit form for the drift and diffusion terms. In particular, we obtained for the
first time these coefficients in the log-functional form by using general physical motivations
supported by symmetries: we have demanded that the drift and the diffusion coefficients
be written in a way consistent with a system confined to a region of space. This provides
a guide as to introducing the symmetry generators with log-dependence, resulting in a log-
dependent Fokker–Planck operator. However, let us observe that the Fokker–Planck equation
constructed from this operator presents, as it would be expected, symmetries other than the
original group. In our case, it is evident that the Fokker–Planck equation is invariant under
dilation, for instance. Yet this symmetry is not described by the algebra we have utilized. This
is a consequence of considering linear equations.

Such an observation points to the open problem of selecting the symmetry to obtain
classes of Fokker–Planck equations. Up to now there is no specific criteria for that. But we
can proceed further by analyzing the classification of Lie algebras, starting from algebras of
the lowest dimensions. This classification is available in the mathematics literature [33]. It is
not the case for their realizations which are of most interest to physicists. It is our contention
that by following the scheme presented here, it is possible to carry out such an analysis. A
study which extends such ideas is currently in progress and will be presented in a separate
publication.
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Finally, it is worth noting that log terms in the Fokker–Planck equation have theoretical
and experimental interests, since they are associated with the problem of nucleation [20] and
quantum chaos [22]. In addition, we have generalized this log-dependent Fokker–Planck
equation to include non-Abelian gauge indices. It is important to emphasize that the present
approach may be extended to non-Abelian gauge fields with SU(3) symmetry that has direct
applications to quark–gluon plasma, as observed in experiments at RHIC with colliding heavy
ion beams. This is a subject that needs to be developed further and will be presented in a
separate paper.
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